Talagrand concentration inequalities for stochastic heat-type equations under uniform distance

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence to Global Equilibrium for Fokker-planck Equations on a Graph and Talagrand-type Inequalities

In recent work, Chow, Huang, Li and Zhou [6] introduced the study of Fokker-Planck equations for a free energy function defined on a finite graph. When N ≥ 2 is the number of vertices of the graph, they show that the corresponding FokkerPlanck equation is a system of N nonlinear ordinary differential equations defined on a Riemannian manifold of probability distributions. The different choices ...

متن کامل

Poincar e ’ s inequalities and Talagrand ’ s concentration phenomenon for the exponential distribution

We present a simple proof, based on modi ed logarithmic Sobolev inequalities, of Talagrand’s concentration inequality for the exponential distribution. We actually observe that every measure satisfying a Poincar e inequality shares the same concentration phenomenon. We also discuss exponential integrability under Poincar e inequalities and its consequence to sharp diameter upper bounds on spect...

متن کامل

Lower Bounds and Non-Uniform Time Discretization for Approximation of Stochastic Heat Equations

We study algorithms for approximation of the mild solution of stochastic heat equations on the spatial domain ]0, 1[. The error of an algorithm is defined in L2-sense. We derive lower bounds for the error of every algorithm that uses a total of N evaluations of one-dimensional components of the driving Wiener process W . For equations with additive noise we derive matching upper bounds and we c...

متن کامل

Coupling, concentration inequalities and stochastic dynamics

We present a new approach to estimate the relaxation speed to equilibrium of interacting particle systems. It is based on concentration inequalities and coupling. We illustrate our approach in a variety of examples for which we obtain several new results with short and non technical proofs. These examples include the symmetric and asymmetric exclusion process and high-temperature spin-flip dyna...

متن کامل

Lyapunov-type Inequalities for Differential Equations

Let us consider the linear boundary value problem u′′(x) + a(x)u(x) = 0, x ∈ (0, L), u′(0) = u′(L) = 0, (0.1) where a ∈ Λ0 and Λ0 is defined by Λ0 = {a ∈ L∞(0, L) \ {0} : Z L 0 a(x) dx ≥ 0, (0.1) has nontrivial solutions}. Classical Lyapunov inequality states that Z L 0 a(x) dx > 4/L for any function a ∈ Λ0, where a(x) = max{a(x), 0}. The constant 4/L is optimal. Let us note that Lyapunov inequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2019

ISSN: 1083-6489

DOI: 10.1214/19-ejp388